TRANSPORT PROPERTIES OF DENSE DEUTERIUM-TRITIUM PLASMA

Authors

DOI:

https://doi.org/10.26577/JPEOS.2024.v26-i2-a5
        10 3

Keywords:

Dense plasma, inertial confinement fusion, Coulomb logarithm, effective potential, transport properties

Abstract

Warm dense matter is intensively studied all over the world both experimentally and theoretically. At high temperatures and pressures, the existing theoretical models of liquid, gas, solid and plasma are inapplicable to the extreme state of matter. The main obstacle to the application of these models is the strong nonideality of the medium, that is, the significant role played by the interaction of particles and quantum effects. The transport properties of materials in a wide range of densities and temperatures, in particular, for substances under extreme conditions, are important in various fields. Some systems of interest include the interiors of giant planets, white dwarfs, and heated dense matter generated by laser heating and shock compression in experiments. In addition, heated dense matter is actively studied in connection with the development of inertial thermonuclear fusion facilities. Due to the difficulties of diagnostics under extreme conditions in experiments, quantum molecular dynamics (QMD) modeling based on the density functional theory has become an integral part of modern studies of heated dense matter. In this work, we present the results of calculations of the transport properties of beryllium using methods based on density functional theory (DFT simulation). We have computed diffusion and viscosity coefficients on the basis of DFT-simulation for various values of parameters of heated dense beryllium. 

Author Biographies

М.К. Issanova, Al-Farabi KazNU

Issanova Moldir (corresponding author) – Doctor PhD, Associate Professor of the Department of Plasma Physics, Nanotechnology and Computer Physics of al-Farabi Kazakh National University, Senior researcher of Institute of Applied Sciences and Information Technology (Almaty, Kazakhstan, email: issanova@physics.kz )

N.A. Turekul, Institute of Applied Sciences and Information Technology

Turekul Nurgalam – Researcher of Institute of Applied Sciences and Information Technology (Almaty, Kazakhstan, email: nturekul@gmail.com )

N. Djienbekov, Institute of Applied Sciences and Information Technology

Nasriddin Djienbekov - Researcher of Institute of Applied Sciences and Information Technology (Almaty, Kazakhstan, email: nasriddin.djienbekov@gmail.com )

References

R. P. Drake, Phys. Today. – 2010. – V. 63(6). P. 28.

Korobenko V.N., Rakhel A.D., Savvatimskiy A.I., Fortov V.E. Plasma Physics Reports. — 2002. — Vol. 28, no. 12. — Pp. 1008–1016.

Juttner B. J. Phys. D. — 2001. — Vol. 34, no. 17. — P. R103.

Taccetti JM, Shurter RP, Roberts JP et al. J. Phys. A. — 2006. — Vol. 39, no. 17. — P. 4347.

Fennel Th., Doppner T., Passig J. et al. // Phys. Rev. Lett. — 2007. — Apr. — Vol. 98. — P. 143401.

Sitnikov D. S. J. Phys.: Conf. Ser. — 2019. — Vol. 1421. — P. 012001.

Fortov V. E., Ilkaev R. I., Arinin V. A. et al. // Phys. Rev. Lett. — 2007. — Vol. 99, no. 18. - P. 185001.

Knudson M. D., Desjarlais M. P. // Phys. Rev. Lett. — 2017. — Vol. 118, no. 3. - P. 035501.

Fernandez-Panella A., Millot M., Fratanduono D.E. et al. // Phys. Rev. Lett. — 2019. — Vol. 122, no. 25. — P. 255702.

Fortov V.Е., Khrapak А.G., Yakubov I.Т. - Fizmatlit, 2010.

Gryaznov V. K., Iosilevskiy I. L.,. Fortov V. E // Plasma Phys. Controlled Fusion. - 2015. - Vol. 58, no. 1. - P. 014012.

Sjostrom T. and Crockett Sc., Rudin S.PHYSICAL REVIEW B. – 2016. – V. 94. – P. 144101.

Sjostrom T. and Crockett Sc. PHYSICAL REVIEW B. – 2015. – V. 92. – P. 115104.

M. Millot, N. Dubrovinskaia, A. Cernok, S. Blaha, L. Dubrovinsky, D. G. Braun, P. M. Celliers, G. W. Collins, J.H. Eggert, and R. Jeanloz, Science 23, 418 (2015).

M. D. Knudson and M. P. Desjarlais, Phys. Rev. Lett. 103, 225501 (2009).

In Frontiers and Challenges in Warm Dense Matter, edited by F.Graziani, M. P. Desjarlais, R. Redmer, and S. B. Trickey, Lecture Notes in Computational Science and Engineering Vol. 96 (Springer, Heidelberg, 2014).

Gomez M.R., Slutz S.A., Sefkow A.B., Sinars D.B., Hahn K.D., Hansen S.B., Harding E.C., Knapp P.F., Schmit P.F., Jennings C.A., Awe T.J., Geissel M., Rovang D.C., Chandler G.A., Cooper G.W., Cuneo M.E., Harvey-Thompson A.J., Herrmann M.C., Hess M.H., Johns O., Lamppa D.C., Martin M.R., McBride R.D., Peterson K.J., Porter J.L., Robertson G.K., Rochau G.A., Ruiz C.L., Savage M.E., Smith I.C.,. Stygar W.A, Vesey R.A. Experimental demonstration of fusion-relevant conditions in magnetized liner inertial fusion // Phys.Rev.Lett. - 2014. - Vol. 113. - P. 155003.

Hoffmann D.H.H., Blazevic A., Ni P., Rosmej O., Roth M., Tahir N.A., Tauschwitz A., Udrea S., Varentsov D., Weyrich K., and Maron Y. Present and future perspectives for high energy density physics with intense heavy ion and laser beams // Laser and Particle Beams. - 2005. - Vol. 23. - P. 47–53.

U.S. Department of Energy Office of Science. Review of the Stanford Linear Accelerator Center Integrated Safety Management System: Final Report. Washington: GPO, October 2005. p. 1.

H.Y. Suna, Dongdong Kang, Yong Hou, and J.Y. Dai, Transport properties of warm and hot dense iron from orbital free and corrected Yukawa potential molecular dynamics. Matter and Radiation at Extremes 2, 287 (2017).

Z. Donko and P. Hartmann, Phys.Rev.E 78,026408 (2008).

H. Dong, Zh. Fan, Libin Shi, A.Harju, and T.Ala-Nissila. Equivalence of the equilibrium and the nonequilibrium molecular dynamics methods for thermal conductivity calculations: From bulk to nanowire silicon. Phys. Rev. B 97, 094305 (2018).

V. Recoules, F. Lambert, A. Decoster, B. Canaud, and J. Clérouin. Ab Initio Determination of Thermal Conductivity of Dense Hydrogen Plasmas. Phys. Rev. Lett. 102, 075002 (2009).

J. P. Hansen, I. R. McDonald, and E. L. Pollock, Statistical mechanics of dense ionized matter. III. Dynamical properties of the classical one-component plasma, Phys. Rev. A 11, 1025 (1975).

Ye. K. Aldakul and Zh. A. Moldabekov, T. S. Ramazanov. Melting, freezing, and dynamics of two-dimensional dipole systems in screening bulk media. Phys. Rev. E 102, 033205 (2020).

Holst B., Redmer R., Michael P. Desjarlais // Phys. Rev. B. — 2008. — May. — Vol. 77. — P. 184201.

B. Militzer, D. M. Ceperley // Phys. Rev. E. — 2001. — Vol. 63, no. 6. — P. 066404

Downloads

How to Cite

Issanova М. ., Turekul Н. ., & Djienbekov Н. (2024). TRANSPORT PROPERTIES OF DENSE DEUTERIUM-TRITIUM PLASMA. THE JOURNAL OF THE OPEN SYSTEMS EVOLUTION PROBLEMS, 26(2), 37–44. https://doi.org/10.26577/JPEOS.2024.v26-i2-a5