STUDY OF THE DIFFUSION COEFFICIENT FOR HYDROGEN-SILICON AND HYDROGEN-GRAPHITE MIXTURES IN DENSE PLASMA

Authors

DOI:

https://doi.org/10.26577/JPEOS.2024.v26-i2-a3
        16 0

Keywords:

diffusion coefficient, hydrogen-silicon, hydrogen-graphite, Chapman-Enskog method

Abstract

Research in the field of hot dense matter and inertial confinement of nuclear fusion is gaining increasing importance in modern science. It also allows for a deeper understanding of the internal dynamics of giant planets, accretion of matter near stars, the influence of radiation pressure, including convection and diffusion processes in their internal structure, and spectral evolution. Metallic hydrogen plays a key role in studying heat transfer and diffusion processes in dense environments. It has significant practical applications, potentially being used as a superconductor in science and technology. This work investigates diffusion processes in dense hydrogen plasma. Using the Debye potential model, diffusion coefficients were calculated for different values of the plasma non-ideality parameter using the Chapman-Enskog method. Special attention was given to the interaction of plasma with materials based on silicon and graphite. The results obtained using the Debye potential show good agreement with molecular dynamics models and AA-TCP (average-atom two-component plasma) models in the regime of weak interactions, where Γ < 1. This confirms the reliability of the method and its applicability for analyzing weakly bound systems.В данной работе изучен процесс диффузии в плотной водородной плазме. Оценены коэффициенты диффузии для смесей водрод-кремний и водород-графит. Результаты, полученные на основе потенциала Дебая, обнаруживают лучшее согласие в пределе слабой связи Γ < 1 по сравнению с методом молекулярной динамики и моделью AA-TCP (average-atom, two-component plasma model).

Author Biographies

A.I. Kenzhebekova, Al-Faraby Kazakh National University

Kenzhebekova Akmaral (corresponding author) – PhD, senior teacher of the Department of Plasma physics, nanotechnology and computer sciences of al-Farabi Kazakh National University (Almaty, Kazakhstan, email: kenzhebekova.a@kaznu.kz)

S.K. Kodanova, Al-Faraby Kazakh National University

Kodanova Sandugash – Candidate of Physical and mathemical sciences, Professor of the Department of Plasma physics, nanotechnology and computer physics of al-Farabi Kazakh National University (Almaty, Kazakhstan, email: kodanova@physics.kz)

References

Baraffe I., Chabrier G., and Barman T. The physical properties of extra-solar planets, Reports on Progress in Physics. – 2010. - V.73. – P. 016901.

Saumon D. and Guillot T. Shock compression of deuterium and the interiors of Jupiter and Saturn, The Astrophysical Jourmal. – 2004. - V. 609. - P. 1170-1180.

Guillot T. and. Showman A. P. Evolution of “51 Pegasus b-like” planets, Astronomy. Astrophysics. – 2002. - V. 385. - P. 156-165.

Nellis W. J. Dynamic compression of materials: metallization of fluid hydrogen at high pressures, Reports on Progress in Physics. – 2006. - V. 69. - P. 1479.

Burrows A., Hubbard W. B., Lunine J. I. and Liebert J. The theory of brown dwarfs and extrasolar giant planets, Reviews of Modern Physics. – 2001. – V. 73. – P. 719.

Redmer R., and B. Holst. Metal-to-Nonmetal Transitions. Springer Series in Materials Science (Springer, Berlin). – 2010. - Vol. 132. - P. 63.

McMahon J.M., Morales M.A., Pierleoni C. and Ceperley D.M. The properties of hydrogen and helium under extreme conditions// Reviews of Modern Physics. – 2012. - V. 84. – P. 1607.

Weir S.T., Mitchell A.C., Nellis W.J., Metallization of fluid molecular hydrogen at 140 GPa. Physical Review Letters. – 1996. – Vol. 76 (11). – P. 1860–1863.

Caplan M.E., Bauer E.B., Freeman I.F. Accurate diffusion coefficients for dense white dwarf plasma mixtures // Mon. Not. R. Astron. Soc. Lett. – 2022. – Vol. 513, № 11. – P. L52-L56.

Moldabekov ZA, Dornheim T, Bonitz M. Screening of a test charge in a free-electron gas at warm dense matter and dense non-ideal plasma conditions // Contributions to Plasma Physics. – 2022. –Vol.62. - e202000176.

Kodanova S.K., Ramazanov T.S. et al., Calculation of ion stopping in dense plasma by the Monte-Carlo method // ournal of Physics: Conference Series. – 2018. – Vol.946 (1).

Saumon D., Blouin S., Tremblay P-E. Current challenges in the physics of white dwarf stars // Physics Reports. – Vol. 988. - 2022.– P. 1-63.

Heinonen R.A. et al. Diffusion Coefficients in the Envelopes of White Dwarfs // Astrophys. J. – 2020. – Vol. 896, № 1. – P.2.

Shestakova L.I., Kenzhebekova A.I., Serebryanskiy A.V. On survival of dust grains in the sublimation zone of cold white dwarfs // Mon. Not. R. Astron. Soc. - 2022. - Vol. 514, № 1. – P.997-1005.

Kodanova S. K., Issanova M. K., Omiraliyeva G.K., Ramazanov T.S. Investigation of the influence of single-particle oscillations on the transport properties of dense plasma // Contributions to Plasma Physics. – 2022. – V.62(10). – e202200018.

M. K. Issanova, S. K. Kodanova, T. S. Ramazanov, D. H. H. Hoffmann, Contrib. Plasma Physics 2016, 56(5), 425.

Stanton L.G., Murillo M.S. Ionic transport in high-energy-density matter // Phys. Rev. E. – 2016. – Vol. 93, № 4. – P. 1-23.

Paquette C. et al. Diffusion coefficients for stellar plasmas // Astrophys. J. Suppl. Ser. – 1986. – Vol. 61. – P. 177.

Chapman S., Cowling T.G. The Mathematical Theory of Uniform Gases. – Cambridge: Cambridge Univ. Press, 1970. – P.448.

Pelletier C. et al. Carbon pollution in helium-rich white dwarf atmospheres Time-dependent calculations of the dredge-up process // Astrophys. J. – 1986. – Vol. 307. – P. 242.

Baalrud S.D., Daligault J. Modified Enskog kinetic theory for strongly coupled plasmas // Phys. Rev. E. - 2015. - Vol. 91. - № 6. - P. 063107.

Downloads

How to Cite

Kenzhebekova А. ., & Kodanova С. (2024). STUDY OF THE DIFFUSION COEFFICIENT FOR HYDROGEN-SILICON AND HYDROGEN-GRAPHITE MIXTURES IN DENSE PLASMA. THE JOURNAL OF THE OPEN SYSTEMS EVOLUTION PROBLEMS, 26(2), 18–24. https://doi.org/10.26577/JPEOS.2024.v26-i2-a3