Investigation of nanostructured composite fibers based on Fe₃O₄

Authors

DOI:

https://doi.org/10.26577/JPEOS.2024.v26-i2-a4
        23 8

Keywords:

Nanoparticles, Magnetite, Fe3O4, chemical condensation, protective materials, electromagnetic radiation

Abstract

In modern fundamental and applied research, protective materials containing nanostructures are becoming increasingly popular, which leads to their widespread use in fields such as medicine, pharmaceuticals, electronics and many others. In this paper, a chemical condensation method is considered for the integration of magnetic nanoparticles with superparamagnetic properties into the structures of polymer fibers, opening up new horizons for the development of materials capable of protecting against electromagnetic radiation.  Magnetite nanoparticles (Fe3O4) were synthesized by chemical condensation with an optimal ratio of two aqueous solutions of iron salts. Iron sulfate (FeSO4·7H2O), iron trichloride (FeCl3·6H2O) and 25% aqueous ammonia solution (NH4OH·H2O) were used as initial reagents. The research focuses on the study of ultrathin composite fibers obtained from synthesized magnetite nanoparticles. A detailed analysis of the crystal structure, phase composition and physico-chemical properties of magnetic fillers will be carried out in the work. Imaging techniques such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction analysis (XRD) and energy dispersive X-ray spectroscopy (EDAX) will be used for this purpose. An analysis of the factors affecting the shielding properties of composite materials will also be carried out. The results obtained can significantly expand the range of applications of polymer fibers as protective materials in various high-tech industries.

Author Biographies

A. Lesbayev, Satbayev University

Aidos Lesbayev – PhD, General Physics department head, Satbayev University (Almaty, Kazakhstan, email: i_dos_90@mail.ru)

D. Akalim, Satbayev University

Doszhan Akalim – doctoral student of Satbayev University (Almaty, Kazakhstan, email: doszhan.a.a@gmail.com)

D. Yerezhep , Satbayev University

Ережеп Дархан Есейұлы (корреспонденция авторы) – PhD, т.ғ.к., Стандарттау, сертификаттау және метрология кафедрасының меңгерушісі, Қ.И. Сәтбаев атындағы ҚазҰТЗУ (Алматы қ-сы, Қазақстан, эл.пошта: darhan_13@physics.kz)

References

Z.P. Wu, T. Liu, D.M. Chen, G. Wu, Q.H. Wang, Y.H. Yin, Y.S. Li, Q.F. Xu, A. Krishamurthy, A facile method to improving the electromagnetic interference shielding of a free-standing and foldable carbon nanotube mat, RSC Adv. 6 (2016) 62485–62490. https://doi.org/10.1039/C6RA11507A.

R.B. Jagadeesh Chandra, B. Shivamurthy, S.D. Kulkarni, M.S. Kumar, Hybrid polymer composites for EMI shielding application- a review, Mater. Res. Express. 6 (2019) 082008. https://doi.org/10.1088/2053-1591/aaff00.

M. Patadia, A. Quinn, M. Tank, C. Jolowsky, L. Luiz, A. Psulkowski, M. Kurilich, A. De Leon, R. Liang, R. Sweat, Enhanced multifunctionality in carbon fiber/carbon nanotube reinforced PEEK hybrid composites: Superior combination of mechanical properties, electrical conductivity, and EMI shielding, Compos. Part B Eng. 284 (2024) 111674. https://doi.org/10.1016/j.compositesb.2024.111674.

R. Bahramian, M.B. Nezafati, S. Hamed Aboutalebi, Recent progress and prospects of two-dimensional materials for electromagnetic interference shielding, FlatChem. 47 (2024) 100722. https://doi.org/10.1016/j.flatc.2024.100722.

P. Velayudhan, K. M S, N. Kalarikkal, S. Thomas, Exploring the Potential of Sustainable Biopolymers as a Shield against Electromagnetic Radiations, ACS Appl. Bio Mater. 7 (2024) 3568–3586. https://doi.org/10.1021/acsabm.4c00421.

S. Wen, D.D.. Chung, Electromagnetic interference shielding reaching 70 dB in steel fiber cement, Cem. Concr. Res. 34 (2004) 329–332. https://doi.org/10.1016/j.cemconres.2003.08.014.

Y.-J. Chen, Y. Li, B.T.T. Chu, I.-T. Kuo, M. Yip, N. Tai, Porous composites coated with hybrid nano carbon materials perform excellent electromagnetic interference shielding, Compos. Part B Eng. 70 (2015) 231–237. https://doi.org/10.1016/j.compositesb.2014.11.006.

R. Kumar, S.R. Dhakate, P. Saini, R.B. Mathur, Improved electromagnetic interference shielding effectiveness of light weight carbon foam by ferrocene accumulation, RSC Adv. 3 (2013) 4145. https://doi.org/10.1039/c3ra00121k.

H. Liu, Y. Yang, N. Tian, C. You, Y. Yang, Foam-structured carbon materials and composites for electromagnetic interference shielding: Design principles and structural evolution, Carbon N. Y. 217 (2024) 118608. https://doi.org/10.1016/j.carbon.2023.118608.

G.K. Sharma, S.L. Joseph, N.R. James, Recent Progress in Poly (3,4‐Ethylene Dioxythiophene): Polystyrene Sulfonate Based Composite Materials for Electromagnetic Interference Shielding, Adv. Mater. Technol. 9 (2024). https://doi.org/10.1002/admt.202301203.

N. Luo, Y. Zhang, H. Zhang, T. Liu, Y. Wang, F. Chen, Q. Fu, Electromagnetic interference shielding performance of lightweight aramid nanofiber/graphene composite aerogels, J. Mater. Chem. A. 12 (2024) 10359–10368. https://doi.org/10.1039/D3TA07473K.

M. Rahaman, D. Khastgir, A.K. Aldalbahi, eds., Carbon-Containing Polymer Composites, Springer Singapore, Singapore, 2019. https://doi.org/10.1007/978-981-13-2688-2.

D.D.L. Chung, Materials for Electromagnetic Interference Shielding, J. Mater. Eng. Perform. 9 (2000) 350–354. https://doi.org/10.1361/105994900770346042.

J. Joo, A.J. Epstein, Electromagnetic radiation shielding by intrinsically conducting polymers, Appl. Phys. Lett. 65 (1994) 2278–2280. https://doi.org/10.1063/1.112717.

A. De Souza Gomes, ed., New Polymers for Special Applications, InTech, 2012. https://doi.org/10.5772/3345.

N.C. Das, T.K. Chaki, D. Khastgir, A. Chakraborty, Electromagnetic interference shielding effectiveness of ethylene vinyl acetate based conductive composites containing carbon fillers, J. Appl. Polym. Sci. 80 (2001) 1601–1608. https://doi.org/10.1002/app.1253.

M. Das, P.P. Sethy, B. Sundaray, EMI shielding performance of graphene oxide reinforced polyaniline/polystyrene solution cast thin films, Synth. Met. 296 (2023) 117369. https://doi.org/10.1016/j.synthmet.2023.117369.

A. Rezvani-Moghaddam, Z. Ranjbar, U. Sundararaj, A. Jannesari, A. Dashtdar, Edge and basal functionalized graphene oxide nanosheets: Two different behavior in improving electrical conductivity of epoxy nanocomposite coatings, Prog. Org. Coatings. 172 (2022) 107143. https://doi.org/10.1016/j.porgcoat.2022.107143.

S. Yasufuku, Technical progress of EMI shielding materials in Japan, IEEE Electr. Insul. Mag. 6 (1990) 21–30. https://doi.org/10.1109/57.63095.

K. Osouli-Bostanabad, E. Hosseinzade, A. Kianvash, A. Entezami, Modified nano-magnetite coated carbon fibers magnetic and microwave properties, Appl. Surf. Sci. 356 (2015) 1086–1095. https://doi.org/10.1016/j.apsusc.2015.08.115.

X. Wang, X. Xing, H. Zhu, J. Li, T. Liu, State of the art and prospects of Fe3O4/carbon microwave absorbing composites from the dimension and structure perspective, Adv. Colloid Interface Sci. 318 (2023) 102960. https://doi.org/10.1016/j.cis.2023.102960.

H. Salimkhani, F. Movassagh-Alanagh, H. Aghajani, K. Osouli-Bostanabad, Study on the Magnetic and Microwave Properties of Electrophoretically Deposited Nano-Fe3O4 on Carbon Fiber, Procedia Mater. Sci. 11 (2015) 231–237. https://doi.org/10.1016/j.mspro.2015.11.118.

S. Bagheri, N.M. Julkapli, Modified iron oxide nanomaterials: Functionalization and application, J. Magn. Magn. Mater. 416 (2016) 117–133. https://doi.org/10.1016/j.jmmm.2016.05.042.

A.P. Mehta, C. V. Pardeshi, Multifunctional Magnetic Nanoparticles: An Effective Theranostic Carrier System, in: Nanomater. Drug Deliv. Syst., Springer International Publishing, Cham, 2023: pp. 175–207. https://doi.org/10.1007/978-3-031-30529-0_6.

K.Q. Jabbar, A.A. Barzinjy, S.M. Hamad, Iron oxide nanoparticles: Preparation methods, functions, adsorption and coagulation/flocculation in wastewater treatment, Environ. Nanotechnology, Monit. Manag. 17 (2022) 100661. https://doi.org/10.1016/j.enmm.2022.100661.

Downloads

How to Cite

Lesbayev А., Akalim Д., & Yerezhep Д. (2024). Investigation of nanostructured composite fibers based on Fe₃O₄. THE JOURNAL OF THE OPEN SYSTEMS EVOLUTION PROBLEMS, 26(2), 25–36. https://doi.org/10.26577/JPEOS.2024.v26-i2-a4