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CRITICAL STATISTICAL ENSEMBLES IN ELECTRON NANOSYSTEMS  

AT THE LOCALIZATION TRANSITION 
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The statistical properties of spectra in the electron nanostuctures are studied with 

and without magnetic field. It is shown that the spectral correlations exhibit 

universal scale-independent behaviour characteristic of critical statistical 

ensembles 

 

Introduction 

The crossover from integrability to chaos 

is one of the important issues in physics of 

complex systems. Non-ergodicity and nonlinear 

behavior of open systems out of equilibrium is 

often caused by the influence of the external 

conditions, for example, by the adiabatic 

connection to the environment or by imposing 

strong external fields. The description of 

dynamical aspects of time-dependent evolution 

of statistical parameters can be based on the 

formalism of canonical ensembles (when the 

number of particles N in an open nanosystem is 

fixed) and grand-canonical ensembles (when N 

is large and not fixed). As a counterpart for the 

transition between full integrability and 

complete chaos in quantum electronic systems 

(e.g. quantum dots coupled to a bath reservoir) 

can serve a delocalization-localization transition.  

On the other hand, the latter is 

characterized by a sharp crossover of the 

electronic conductivity from the metallic regime 

to the insulating one.  A striking signature of this 

metal-insulator transition is a presence of the 

criticality, meaning that a set of 

thermodynamical quantities exhibit critical 

behavior. It turns out, that the distributions of 

strongly fluctuating parameters at the critical 

point of the transition obey generic common 

laws and can be analyzed by the finite-size 

scaling scenarios. Moreover, a new set of the 

statistical ensembles, named critical ones, have 

been introduced especially for characterizing the 

critical point. 

The problem of localization of quantum 

particles in a disordered nanosystem has 

attracted great attention during last decades,  

 

triggered by the discovery of new quantum 

phenomena in condensed matter physics. After 

the first formulation of the modern theory of 

solids in the 1930’s it was thought for a long 

time that the effect of disorder on the state of 

electrons in solid structures can be described in 

terms of the perturbations of low orders. Indeed, 

the standard quantum-mechanical 

implementation of Boltzmann transport 

approach appeared to work perfectly 

everywhere, expect for certain unexplainable 

observations like, for example, the negative 

magnetoresistance of doped semiconductors in a 

weak magnetic field. It was only in 1958 that 

Philipp Anderson suggested the currently well-

known concept of quantum localization of 

electrons by the potential disorder [1]. He 

proposed that in a tight-binding model of 

electrons on a lattice with chaotically varying 

site energies V the electrons of a given energy E 

would become localized if the spread of the on-

site energies V meaning the disorder degree is 

sufficiently large.  

In the other words, the behavior of the 

electronic states would change drastically from 

extended to localized behavior. In the former 

case the disorder manifests itself mainly through 

a decay of phase coherence in the averaged one-

particle propagator, while in the latter case the 

probability amplitude decreases exponentially as 

one goes away from the centre of localization. It 

is not surprising, since even in a classical system 

the disorder may cause the localization of 

particles. However the quantum nature of 

electrons make them harder to overcome narrow 

passages and channels, despite the fact that 
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quantum particles can tunnel under barriers, i.e. 

through classically forbidden regions. Hence, 

quantum particles in nanoclusters tend to be 

localized more easily than their classical 

counterparts. 

  

Quantum transport in open nanosystems 

The first qualitative consequence of the 

quantum nature of particles for transport in 

disordered open nanosystems is reflected in the 

fact that the mean free path l cannot become 

shorter that the wavelength of the electrons λF. 

For electrons in the centre of the band λF is of 

the order of the lattice spacing a, but for energies 

near the band edge λF may be larger than lattice 

constant a. In a classical system the shortest 

possible mean free path is always given by the 

average distance between the scattering centers, 

irrespectively of the particle energy. If the 

disorder increases beyond the point where l≈ λF 

or else, if the energy of the electrons decreases 

for a fixed disorder, the nature of the electronic 

states is expected to change from extended to 

localized. As a consequence, the electrical 

conductivity of the nanosystem or mobility of 

carriers is expected to vanish to zero.  

This scenario, where a change in the 

electron energy induces a metal-insulator 

transition, was explored early by Mott [2].  He 

introduced the term ‘mobility edge’ for the 

critical energy separating extended and localized 

states. These two types of states are not likely to 

coexist at a given energy, since any small change 

in the potential would cause admixtures of 

extended states with a localized state, and would 

thus delocalize it. On the basis of qualitative 

considerations and experimental data Mott 

concluded that the Anderson transition in a 

three-dimensional system should be 

discontinuous, the conductivity jumps from a 

finite value, called minimum metallic 

conductivity downwards to zero. The advent of 

the computer, which made the exact 

diagonalization of finite-size systems possible, 

and the advances in electrical transport 

measurements near the metal-insulator transition 

at low temperatures have changed this picture. 

It is well established now that there is, in 

fact, no minimum metallic conductivity and that 

the transition is continuous, much like a 

continuous phase transition in usual 

thermodynamics. A continuous phase transition 

is necessarily associated with a characteristic 

length ξ, localization length, which tends to 

infinity as the transition is approached. At the 

transition a natural unit of length does not exist 

anymore and the system is therefore considered 

as being scale-invariant. The ensuing scaling 

behavior was discovered by Thouless [3] who 

noticed that the conductance of a finite-size 

block scales with the size in a universal way.  

In this paper we also consider the 

electronic spectra rather than the conductivity. 

Its statistics also undergo the phase transition 

similar to the conductance. Mostly concentrated 

on the critical point of the metal-insulator 

transition, the various classes of the ensembles 

are numerically investigated depending on the 

presence of the external magnetic field. It has 

earlier shown that the probability function of the 

neighboring spacings P(s) exhibits finite-size 

scaling and also becomes scale-invariant exactly 

at the transition point for both the orthogonal 

and the unitary symmetry. Interestingly, our 

results demonstrate that there is a essential 

difference between the spectral correlations for 

critical orthogonal ensemble (COE) and for the 

Gaussian orthogonal ensemble (GOE) [4]. The 

same is observed for the deviations between 

critical unitary (CUE) and Gaussian unitary 

ensembles (GUE).  

Critical orthogonal ensemble 

For the orthogonal case, which 

corresponds to the system without magnetic field 

and with spinless particles, the level statistics at 

non-vanishing disorder of random potential 

exhibits critical behaviour starting from the three 

dimensions. As an example, we have 

numerically calculated the level statistics of a  
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sample with time-reversal symmetry (φ= 0) for L = 

6 for different disorders. Figure 1 demonstrates how 

the distribution P(s) changes from the GOE-result 

to the Poisson distribution, when the disorder W 

increases. One observes a continuous change of the 

data between the two limits, the slope at small s 

being always linear for arbitrary disorder W in 

agreement with the time-invariant symmetry: 
                                                      

 

,)( sBsP oo          (1) 

with β = 1. In the metallic regime (W < Wc) it 

diminishes towards B
o
 = π

2
/6 with decreasing 

disorder or/and increasing the size, i.e. with 

increasing the conductance g, unless the system is 

in the ballistic regime. In the insulating regime the 

slope B
o
 increases to infinity when both the disorder 

W and the linear size of the system L tend to 

infinity. 

 

 
Fig.1.The level spacing distribution P(s) for a 

cubic nanosystem with orthogonal symmetry for 

various disorder strength W=5, 16.5, 30 и 100 

(box distribution). Taken is a nanocube of linear 

size L=16. Solid line is the GOE result and 

dashed line is Wigner surmise. Dotted line: 

Poisson distribution Pp(s) = exp(-s). Inset shows 

an enlarged area near s = s0≈2.0, the crossing 

point of the Poisson and the Wigner 

distributions. The number of spacings is about 

10
8
. 

At the transition point W = Wc = 16.5 of the 

`box' model the level spacing distribution function 

corresponds to the critical orthogonal probability 

function P
o
c(s), which is not sensitive to the change 

of the system size L. The prefactor is found to be 

B
o
c = 2.12 0.06, i.e. B

o
c ≈1.29 B

o
, according to the 

Eq. (1). The scale-invariance of the critical level 

statistics has been justified in many works [5-8]. 

We analyze here the overall functional form of the 

critical P
o
c(s), in more detail using results of large-

scale computations, particularly concentrating on 

the asymptotic behaviour for large s. 

We have computed also the level spacing 

distribution function (in form of a histogram) for the 

critical disorder Wc = 20.9 of the Gaussian 

distribution of the on-site energies. The eigenvalues 

were taken from the interval centred at E = 0 

containing approximately 10% of the spectrum. 

Within the numerical error-bars the data of P(s) are 

the same for different L and coincide with those of 

P
o
c(s) for the box distribution, justifying the 

independence on the model of diagonal disorder. By 

other words, it is proved that the critical statistics 

are universal irrespective of the microscopic details 

of the system.  

Of particular interest is the region of spacings 

around s0 = 2.002, where the Wigner surmise 

PW(s)=π
2
/2 exp(-π

2
s

2
/4), and PP(s) = exp(-s), 

intersect. It has been suggested by Shklovskii [5] 

that independently of the disorder degree W, all 

empirical curves P(s) including the critical one, 

P
o
c(s) should intersect at the same point s0, which 

would then play the role of a universal energy. The 

existence of such a universal point would mean that 

the system possess a hidden symmetry. The 

underlying reason for this symmetry, however, is 

not known yet at present.  

Focusing on a region close to s0, we have 

performed detailed calculations with the large 

number of realizations. One should again take into 

account that, in fact, the Wigner surmise only 

approximates the exact RMT result for P(s), albeit 

quite well (within 5%). Thus PGOE(s)≠PW(s). The 

true intersection of PP(s), and PGOE(s), lies at s0 = 

2.019. Careful analysis of our data does not, 

however, show any common crossing point for 

various disorder degrees W (see inset of Fig. 1). 

The computed value of P(s0) for disorder W = 16.5 

(also for W = 30 and 100) differs from PP(s0) by a 

magnitude which exceeds the numerical errors. No 

unique point so has been observed also for the 

unitary case.  
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In the vicinity of the transition point Wc the 

level spacing distribution exhibits critical behaviour 

similar to that of the level number variance, 

discussed in papers [6-8]. Using the finite-size 

scaling analysis for the distribution of neighbouring 

spacings one can construct the disorder dependence 

of the localization length ξ(W) and extract the 

critical exponent ν. The one-parameter scaling 

scenario for the function P(s) has been corroborated 

in a large number of computer simulations [8-10]. 

Therefore we provide here only the summary of 

numerical results available on calculations of the 

critical exponent for various physical situations and 

do not further focus on this topic.  

One can show that the critical exponent as a 

characteristic of the symmetry class, is almost the 

same within statistical uncertainty for different 

models of the diagonal disorder (for the uniform 

and the Gaussian distributions of on-cite energies 

εn) and of the quantum percolation. As expected, it 

is also not sensitive to the anisotropy of the system. 

Generally, all the data for the critical exponent of 

the localization length are centred about the value ν 

= 1.45 ± 0.1, as an acceptable estimate for the 

orthogonal case. It turns out that the value of the 

critical exponent evaluated from the level number 

variance is consistent with that obtained from the 

analysis of P(s). Notably this value is somewhat 

smaller than that found by the high-precision 

transfer-matrix calculations νTM = 1.57 ± 0.02. The 

reason of such a slight, but resolvable discrepancy 

is not known yet.  

 

Critical unitary ensemble 

We now consider the level statistics for 

systems with broken time reversal symmetry. Such 

a situation can be realized by applying an external 

Aharonov-Bohm (AB) magnetic flux through a 

system forming a ring geometry. In order to achieve 

the maximal effect of the change of the symmetry, 

the AB-fluxes of the equal magnitude are applied 

along all three perpendicular directions in a three-

dimensional cubic lattice (the three-component 

flux). Performing diagonalization for different 

magnitudes of the flux ranging from φ = 0 to φ = 

1/4, we found the critical statistics to be sensitive to 

the flux. As a function of φ, the distribution P(s) at 

the critical point Wc = 16.5 changes smoothly from 

the critical orthogonal P
o

c(s) to the critical unitary 

form P
u
c(s) at φ = 1/4, which is known as the COE-

CUE crossover [8] (see figure 2). 

 

 

 
 

Fig.2.The level spacing distribution P(s) for the 

unitary case at the critical disorder W=16.5. 

Upper panel: at different values of the 

Aharonov-Bohm flux φ for a system with fixed 

linear size L = 5. Lower panel: at the fixed flux φ 

= 0.2 for different sizes L = 5 (+); 10 (□); 20 (●). 

Solid and dashed lines are the critical P(s) for 

two limiting phases φ = 1/4 and φ = 0, 

respectively. Inset: asymptotic behaviour of P(s) 

at the limiting AB-phase φ = 1/4 for linear sizes 

L = 5 (+) and 20 (●). Solid line – P
u

c(s)  [Eq. 

(3)], dashed line - PP(s) and dotted line – P
u

W(s) 

all correspond to critical, insulating and metallic 

regimes, respectively. 

 

This flux-controlled crossover of the critical level 

statistics repeats periodically, resuming the 

orthogonal form at φ=0.5, since a half of the flux 

quantum corresponds to the real Hamiltonian 

defined with antiperiodic boundary conditions 
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 (`false' T-invariance). For fixed flux, all P(s) at Wc 

proved to be insensitive to variations of the size of 

the system L = 5, 10 and 20, as shown in figure 2 

(left panel) for φ = 0.2. The same L-independent 

behaviour has been observed for other values of 

flux φ = 0.05, 0.1 and 0.25. As expected for the T-

symmetry broken, we observe a quadratic 

behaviour Pu(s) ~s
2
 for small s at all W, as soon as 

L is finite. It has recently been suggested that the 

flux-driven crossover of the critical unitary 

statistics can be explained on the basis of the 

analogy to the semi-classical limit. For n = 0 both 

the Mehta parameter [9] for the unitary critical 

statistics J
c
u = 0.685±0.003 and, consequently, the 

spacing variance var s = 2J
c
u -1 ≈ 0.344 are larger 

than those for the GUE, where Ju for RMT is equal 

to 0.590.  

The extreme form of the unitary critical 

P
u
c(s) corresponding to the AB-phase φ = 1/4 

coincides with that found in the presence of the 

strong magnetic field, as has been shown in Ref. 

[10]. In the latter case, the COE-to-CUE crossover 

is discontinuous, unlike to the application of an 

AB-flux. The behaviour of P
u
c(s) for small 

spacings s is described by the power-law 

,)( sBsP u

с

u

с 
 

,1.05.8 u

сB       (2) 

with the `repulsion parameter' =2. This result is 

in direct contradiction to another numerical work 

[11], which has claimed the linear growth of P
u

c(s) 

at small s, i.e.  = 1, similar to the critical 

orthogonal case.  

The asymptotic form of the size-invariant 

P
u
c(s) for large s can be well approximated by the 

simple exponential decay [11] 

),exp()( sADsP u

c

u

с

u

с  ,1.085.1 u

сA  (3) 

that is slower compared to the Gaussian tail 

characteristic of the RMT-result. On the other 

hand, it is similar to the Poisson decay valid in the 

strongly localized regime, although the decay rate 

A
u
c is certainly larger than unity. Note that the 

critical prefactor B
u
c = 2.59 B

u
RMT is also markedly 

larger than that of the GUE. In fact, the value A
u
c 

≈1.85 should be considered as a lower bound for 

the exponential decrease of P
u
c(s) because obtained 

range of s is not sufficiently large. It was 

demonstrated in [12] that the similar 

asymptotic behaviour holds also for systems 

with time-reversal symmetry. 

 

Discussions 

Thus we demonstrated the symmetry 

dependence of the critical spectral fluctuations 

and the existence of a new class of critical 

statistical ensembles COE and CUE, which are 

ascribed to the disorder-induced metal-

insulator transition. It would be interesting to 

ask: what happens with these critical statistics 

for lower dimensions? 

For instance, in two-dimensional systems 

the probability density of neighbouring spacing 

P(s) in the absence of spin-orbit coupling 

changes towards the Poisson distribution, as the 

size of the system grows, with no critical 

behaviour [8] in contrast to the higher 

dimensions. This is consistent with the scaling 

argument that all electron states in two 

dimensions are localized in the 

thermodynamical limit. Switching on the 

strong spin-orbit interaction drives the open 

system towards a metal-insulator transition in 

2D at non-zero disorder. As a result, the one-

parameter scaling scenario and the critical 

peculiarities of the spectral fluctuations are 

recovered again. Indeed, with increasing the 

system size the two-level spectral correlation 

function and the distribution P(s) above the 

mobility edge tend to those which correspond 

to the symplectic symmetry class of the random 

Hamiltonians. In the insulating regime, i.e. 

below the mobility edge, the eigenvalues are 

chaotically distributed as completely 

uncorrelated variables. Exactly at the critical 

point of the transition the level statistics 

possess universal critical forms [11] as distinct 

from both the spinless situation and the 

Gaussian symplectic ensemble. As to 

asymptotic of large spacing, the logarithm of 

P(s) decays linearly similar to the two above 

critical symmetries of COE and CUE, however 
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the decay rate is almost twice faster. This is related 

to the fact that the quantum nanosystem has less 

number of degrees of freedom. 
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поведение, характерное для критических статистических ансамблей. 
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